منابع مشابه
Gauge Theories on Four Dimensional Riemannian Manifolds
This paper develops the Riemannian geometry of classical gauge theories Yang-Mills fields coupled with scalar and spinor fields on compact four-dimensional manifolds. Some important properties of these fields are derived from elliptic theory : regularity, an "energy gap theorem", the manifold structure of the configuration space, and a bound for the supremum of the field in terms of the energy....
متن کاملA Geometry Preserving Kernel over Riemannian Manifolds
Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...
متن کاملFlowers on Riemannian manifolds
In this paper we will present two upper bounds for the length of a smallest “flower-shaped” geodesic net in terms of the volume and the diameter of a manifold. Minimal geodesic nets are critical points of the length functional on the space of graphs immersed into a Riemannian manifold. Let Mn be a closed Riemannian manifold of dimension n. We prove that there exists a minimal geodesic net that ...
متن کاملCollapsing Riemannian Manifolds to Ones of Lower Dimensions
In [7], Gromov introduced a notion, Hausdorff distance, between two metric spaces. Several authors found that interesting phenomena occur when a sequence of Riemannian manifolds Λf, collapses to a lower dimensional space X. (Examples of such phenomena will be given later.) But, in general, it seems very difficult to describe the relation between topological structures of Mt and X. In this paper...
متن کاملHausdorff measures and dimensions in non equiregular sub-Riemannian manifolds
This paper is a starting point towards computing the Hausdorff dimension of submanifolds and the Hausdorff volume of small balls in a sub-Riemannian manifold with singular points. We first consider the case of a strongly equiregular submanifold, i.e., a smooth submanifold N for which the growth vector of the distribution D and the growth vector of the intersection of D with TN are constant on N...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the American Mathematical Society
سال: 1945
ISSN: 0002-9904
DOI: 10.1090/s0002-9904-1945-08483-3